martes, 27 de julio de 2010

Métodos principales
Cromatografía Frontal: Procedimiento en el que la muestra (líquida o gaseosa) se alimenta de forma continua al lecho cromatográfico. No se utiliza ninguna fase móvil adicional
Cromatografía de Desplazamiento: Procedimiento en el cual la fase móvil contiene un compuesto (el desplazarte) que es retenido más fuertemente que los componentes de la muestra analizada. La muestra se alimenta al sistema en forma discreta, como una pequeña cantidad en un intervalo breve.
Cromatografía de Elusión: Procedimiento en el que la fase móvil se pasa de forma continua a través o a lo largo del lecho cromatográfico y la muestra se suministra al sistema de forma discreta, como una pequeña cantidad en un tiempo breve.
Clasificación de acuerdo al lecho cromatografico
Cromatografía en Columna: Técnica de separación en la que el lecho estacionario está contenido dentro de un tubo. Las partículas de fase estacionaria sólida, o de soporte recubierto con una fase estacionaria líquida, pueden llenar por completo el tubo (Columna Empaquetada) o estar concentradas sobre o a lo largo de su pared interna, dejando una ruta abierta, no restringida, para el paso de la fase móvil por el centro del tubo (Columna Tubular Abierta).
Cromatografía plana: Técnica de separación en la que la fase estacionaria está en forma de plano o sobre un plano. Éste puede ser un papel, que sirva como tal o que esté impregnado con una sustancia que actúe de fase estacionaria (Cromatografía en Papel), o una capa de partículas sólidas extendida sobre un soporte, tal como una placa de vidrio (Cromatografía en Capa Fina, TLC). A veces a la cromatografía plana se la llama también Cromatografía de Lecho Abierto.

CROMATOGRAFÍA DE GASES ACOPLADA A ESPECTROMETRÍA DE MASAS
Esta técnica es la más confiable. Se utiliza al cromatógrafo de gases como separador de la muestra desconocida en sus componentes El espectrómetro de masas ioniza los componentes separados y realiza un barrido electrónico de todos los iones para ubicar iones de BPCs comparando sus masas teóricas.
Esta es una técnica absoluta y muy confiable ya que realiza el barrido de todos los congéneres basándose en el hecho de que la muestra es una familia de isómeros. Los isómeros son dos o más moléculas que tienen el mismo peso molecular pero diferente estructura. Al barrer electrónicamente solamente 10 pesos moleculares se obtiene un resultado absoluto. Sin lugar a dudas este es el medio más seguro para detectar y cuantificar BPCs.
Espectrometría


Dispersión de luz en un prisma triangular
La espectroscopia surgió con el estudio de la interacción entre la radiación y la materia como función de la longitud de onda (λ). En un principio se refería al uso de la luz visible dispersada según su longitud de onda, por ejemplo por un prisma. Más tarde el concepto se amplió enormemente para comprender cualquier medida en función de la longitud de onda o de la frecuencia. Por tanto, la espectroscopia puede referirse a interacciones con partículas de radiación o a una respuesta a un campo alternante o frecuencia variante (ν). Una extensión adicional del alcance de la definición añadió la energía (E) como variable, al establecerse la relación E=hν para los fotones. Un gráfico de la respuesta como función de la longitud de onda (o más comúnmente la frecuencia) se conoce como espectro.

La espectrometría es la técnica espectroscópica para tasar la concentración o la cantidad de especies determinadas. En estos casos, el instrumento que realiza tales medidas es un espectrómetro o espectrógrafo.

La espectrometría a menudo se usa en física y química analítica para la identificación de sustancias mediante el espectro emitido o absorbido por las mismas.

La espectrometría también se usa mucho en astronomía y detección remota. La mayoría de los telescopios grandes tienen espectrómetros, que son usados para medir la composición química y propiedades físicas de los objetos astronómicos, o para medir sus velocidades a partir del efecto Doppler de sus líneas espectrales.

inmunodeteccion elisa

El método de ELISA se fundamenta en el uso de anticuerpos específicos para capturar a la proteína de interés. Este procedimiento es capaz de discriminar proteínas específicas presentes en el producto bajo análisis, de entre cientos de proteínas distintas presentes en la misma muestra. El método de ELISA es extremadamente sensible, versátil y cuantitativo. En general, este procedimiento, incluye el uso de anticuerpos que se unen de manera específica a las proteínas de interés (llamados anticuerpos primarios), por ejemplo a aquellas que son sintetizadas como resultado de la introducción del nuevo ADN (llamadas proteínas transgénicas). Una reacción colorimétrica o fluorimétrica desencadenada por un segundo anticuerpo (o anticuerpo secundario) permite visualizar y medir la cantidad de la proteína de interés. El resultado se compara con la señal emitida por concentraciones conocidas de la misma proteína, por lo que el ensayo no solo es cualitativo, si no también cuantitativo. Una restricción para el uso de pruebas de ELISA en la detección de proteínas transgénicas es la desnaturalización de estas durante el procesamiento del alimento. Los resultados de esta prueba se estima que son confiables en un 95% de los casos sometidos
Tabla 2: Características de los métodos ELISA en la detección de OGM
Propósito Identificar y semicuantificar una proteína específica relacionada a un rasgo genéticamente modificado.
Ventajas Moderada preparación de la muestra.
Ensayo relativamente rápido (2-4 horas incluyendo la preparación de la muestra).
Cualitativo o semicuantitativo.
Costo relativamente bajo o medio.
Ensayo de formato robusto y simple.
Conveniente y rentable para el análisis de numerosas muestras.
Económicamente comparado con los métodos de detección de ADN.
Se requiere menos habilidad que para los métodos de detección de ADN.
Equipamiento más barato que para los métodos de detección de ADN.
Desventajas Menos sensible que los métodos de detección de ADN.
Los juegos diagnósticos son almacenados a 4°C.
Costo moderado del equipamiento que requiere un lector de placas de ELISA.
Falta de disponibilidad de anticuerpos relevantes.
La cuantificación puede ser cuestionable, ya que puede estar influenciada por factores externos como el clima, las condiciones del suelo y la disponibilidad de nutrientes.
El desarrollo de anticuerpos apropiados puede demorar de meses hasta años.
Pueden existir falsos positivos, debido a contaminaciones cruzadas con otros componentes de la muestra analizada.
Limitaciones Las pruebas ELISA no son evento específico.
La sensibilidad es de ~ 0.5 a 1% de OGM.
Algunos OGMs no expresan niveles detectables de la proteína blanco y otros expresan la proteína de forma muy limitada o no la expresan en todas las partes de la planta.
Los juegos comerciales están disponibles para un número limitado de OGMs.
La producción de anticuerpos es lenta y difícil.
La mayoría de los ELISA detecta una sola proteína cada uno.
Más útil para material crudo o entero, no procesado. No siempre útil para material procesado, debido a la desnaturalización de las proteínas por el calor.

Conveniente para detectar el flujo del gen en cosechas convencionales de la misma especie, pero la proteína puede ser expresada en una forma modificada o no ser expresada en todos, si la construcción se realizó en una especie de planta diferente.






centrifugacion
La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad. Este es uno de los principios en los que la densidad: Todas lículas, por posa, sectadas por cualquier y una extensa variedad de técnicas derivadas de esta. Donde la fuerza es mayor a la gravedad.
Fundamento teórico
El objetivo de la centrifugación es separar sólidos insolubles(de particulas muy pequeñas dificiles de sedimentar)de un liquido. Para ello, se aplica un fuerte campo centrífugo, con lo cual las partículas tenderán a desplazarse a través del medio en el que se encuentren con la aceleración G. E=velocidad angular2 x radio de giro.
Tipos de centrífugas
Los aparatos en los que se lleva a cabo la centrifugación son las centrífugas. Una centrífuga tiene dos componentes esenciales: rotor (donde se coloca la muestra a centrifugar) y motor. Existen dos tipos de rotores:
• De ángulo fijo: Los tubos se alojan con un ángulo fijo respecto al eje de giro. Se usa para volúmenes grandes.
• Basculante: Los tubos se hallan dentro de unas carcasas que cuelgan. Estas carcasas están unidas al rotor con un eje y cuando la centrífuga gira, se mueven. Se usan para volúmenes pequeños y para separar partículas con un mismo o casi igual coeficiente de sedimentación.
Las centrífugas están metidas en el interior de una cámara acorazada a unos 4ºC. Si esta cámara no estuviese presente, al comenzar la centrifugación, y debido al rozamiento con el aire, subiría la temperatura de la muestra y podría llegar a desnaturalizarse.
Una centrífuga debe tener las masas de las muestras compensadas unas con otras. En caso contrario, la centrífuga podría "saltar por los aires". Aunque hoy en día, para que esto no ocurra, casi todas las centrífugas se detienen si las masas no están compensadas.
Existen dos grandes grupos de centrífugas:
Analíticas: Con las que se obtienen datos moleculares (masa molecular, coeficiente de sedimentación, etc.). Son muy caras y escasas.
Preparativas: Con las que se aíslan y purifican las muestras. Hay 4 tipos de centrífugas preparativas:
• De mesa: Alcanzan unas 5.000 rpm (revoluciones por minuto). Se produce una sedimentación rápida. Hay un subtipo que son las microfugas que llegan a 12.000-15.000 rpm. Se obtiene el precipitado en muy poco tiempo.
• De alta capacidad: Se utilizan para centrifugar volúmenes de 4 a 6 litros. Alcanzan hasta 6.000 rpm. Son del tamaño de una lavadora y están refrigeradas.
• De alta velocidad: Tienen el mismo tamaño que las de alta capacidad y llegan a 25.000 rpm.
• Ultracentrífugas: Pueden alcanzar hasta 100.000 rpm. También están refrigeradas. Son capaces de obtener virus.
Tipos de centrifugación
• Centrifugación diferencial: diferencia en la densidad de las moléculas. Esta diferencia debe ser grande pervada al centrifugar: Las partículas que posean densidades similares sedimentaraíficoiza como centrifugación preparativa para separar ponentes en la mezcla (por ejemplo, para separar mitocondrias de núcleos y membrana)útil para separar moléculas.
• Centrifugación isopícnica: Partículas con el mismo coeficiente de sedimentación se separan al usar medios de diferente densidad. Se usa para la separación de ADN con mucha frecuencia.
• Centrifugación zonal: Se separan partículas con distinto coeficiente de sedimentación por la acción de determinados tampones.
• Ultracentrifugación...: Permite estudiar las características de sedimentación de estructuras subcelulares (lisosomas, ribosomas y microsomas) y biomoléculas. Utiliza rotores (fijos o de columpio) y sistemas de monitoreo. Existen diferentes maneras de monitorear la sede las partículas en la ultracentrifugación, el más común de ellos mediante luz Uerfresones.

Centrifugacion de la gradiente
La técnica de capacitación mediante centrifugación en gradiente permite separar espermatozoides por centrifugación a través de capas de un coloide. Este coloide suele ser normalmente partículas de sílice rodeadas por polivinilpolipirrolidona (PVP) y se suelen usar gradientes de dos densidades (45-90%) o tres (45-60-90%).



Metodología
Tras la obtención de la muestra seminal, esta es sometida a un lavado simple. A continuación se prepara el gradiente de densidad: en un tubo cónico de centrífuga ligeramente inclinado se depositan con sumo cuidado las diferentes capas del gradiente de mayor a menor densidad evitando que se mezclen. Una vez hecho esto, sobre el gradiente formado se aplica la muestra y se centrifuga a 300g durante 20 minutos aproximadamente (dependiendo del protocolo este valor puede variar). Del tubo ya centrifugado se aspira la parte inferior que será la más enriquecida en espermatozoides móviles progresivos. Esta fracción se resuspende en 0.5 a 1ml de cultivo y se vuelve a centrifugar esta vez 5 minutos a 400 g, el sobrenadante se decanta y el pellet obtenido se vuelve a resuspender en 0.5 ml de cultivo concluyendo así la capacitación.
Es importante observar si en la muestra a capacitar encontramos cuerpos gelatinosos ya que, al ser más densos y de gran tamaño frente a los espermatozoides, pueden romper las capas del gradiente durante la centrifugación y facilitar el paso de componentes no deseados hacia el fondo del tubo disminuyendo considerablemente la eficacia de la capacitación.
Ventajas
Entre las principales ventajas de esta técnica frente a otras técnicas de capacitación se puede destacar la alta tasa de recuperación de espermatozoides y la capacidad de aislarlos de otros residuos reflejada en fracciones mucho más limpias. Es por ello, por lo que está indicada para muestras oligozoospérmicas, astenozoospérmicas y con abundantes células y detritos.

Inconvenientes
Se trata de una técnica que requiere precisión y cuidado en la preparación de los gradientes. Es uno de los métodos más caros. Entraña un posible riesgo de endotoxinas. Es importante mencionar que con este sistema no se puede usar Percoll.

Centrifugación diferencial.
En este método, el tubo de centrífuga se llena con una mezcla uniforme problema. Tras la centrifugación se obtienen dos fracciones: un pellet que contiene el material sedimentado y un sobrenadante con el material no sedimentado. Es una técnica muy útil, sobre todo para aislamiento de células y orgánulos subcelulares. Es un tipo de separación logrado en base al tamaño de las partículas.
Esta técnica consiste en someter a una muestra heterogénea de partículas a fuerzas de centrifugación crecientes por períodos de tiempo crecientes. Los precipitados obtenidos luego de cada centrifugación estarán enriquecidos en una determinada partícula.
Para lograr la separación, los coeficientes de sedimentación de las partículas deben diferir en al menos un factor de tres (moléculas con s mayores precipitan primero).

La centrifugación es un método que utiliza la propiedad de sedimentación de partículas con base en la masa de las moléculas para la separación de partículas de una solución. Una vez obtenido el lisado o homogenado celular se ha de proceder a su fraccionamiento. Una de las técnicas más empleadas es la centrifugación. Se basa en hacer girar el tubo a gran velocidad de forma que se produzca la acumulación en el fondo del mismo de las partículas que tienden a hundirse por tener una densidad menor que la del medio en que se encuentran. Así, después de la centrifugación la muestra, homogénea, se habrá separado en dos fracciones : sobrenadante (supernatant), fracción homogénea que no ha sedimentado, y el sedimento (pellet) que ha quedado adherida al fondo del tubo.

CENTRIFUGACION DIFERENCIAL:
La centrifugación diferencial se basa en la existencia de diferentes partículas en la suspensión que difieren en su densidad de la del medio. Si se centrifuga en condiciones suaves (poco tiempo, poco fuerza de aceleración) sedimentarán las partículas mayores y/o más densas. Cuando el sobrenadante de la primera centrifugación es centrifugado de nuevo en condiciones de mas tiempo y más fuerza de aceleración sedimentan de nuevo las partículas más densas presentes y así sucesivamente. Se pueden aplicar condiciones crecientes de severidad en la centrifugación y obtener una colección de sedimentos que corresponden sucesivamente a fracciones de partículas de diferente tamaño y/o densidad.

Ultra centrifugación
Si un recipiente con agua y arena es agitado y luego se deja inmovil, la arena rapidamente sedimentara al fondo de del recipiente debido a la influencia de la fuerza de gravedad. cuando una macromolecual se encuentra en solucion, expermienta la misma gravedad, sin embargo no se observa sedimentacion de esta. Solamente cuando esta sujeta a grandes aceleraciones la sedimentacion de la macromolecula comenzara a imitar los granos de arena.
La ultracentrifugacion, desarrollada en 1923, puede lograr velocidades de rotacion tan altas como 80000 rpm, capaces de generar fuerzas centrifugas de 600.000 g.
a. Sedimentación
la relacion de sedimentacion de una particula dependera de su masa. esta relacion puede caracterizar particulas como por ejemplo las subunidades del ribosoma. Para la realizacionde este procedimiento se utilizan ultracentrifugas, que pueden contar con regulacion de la temperatura y vacio.

b. Ultra centrifugación Preparativa
Las ultracentrifugas preparativas, como lo indica su nombre son para la reparacionde muestras. los rotores preparativos pueden contener tubos para muetras con ejes paralelos, en angulo o perpendiculares, al eje de rotacion del motor, dependiendo de la aplicacion que se les quiera dar. Se utiliza tambien en estos casos la ultracentrifugacion en gradiente de densidad, en la cual en el mismo tubo se forman fases de acuerdo al coeficiente de sedimentacion, quedando aquellos componentes con mas lenta sedimentacion en la prte superior y los de mayor sedimentacion abajo














Bibliografía


http://es.wikipedia.org/wiki/Sacarosa
http://www.enbuenasmanos.com/articulos/muestra.asp?art=546
http://es.wikipedia.org/wiki/Almid%C3%B3n
http://es.wikipedia.org/wiki/Gluc%C3%B3geno
http://es.wikipedia.org/wiki/Glucol%C3%ADpido
http://es.wikipedia.org/wiki/L%C3%ADpido
http://es.wikipedia.org/wiki/Terpeno
http://es.wikipedia.org/wiki/P%C3%A9ptido
http://es.wikipedia.org/wiki/Nomenclatura_IUPAC
http://132.248.103.112/nomencla/nomen7.htm
http://mx.answers.yahoo.com/question/index?qid=20070306201009AA4jNuQ
http://dta.utalca.cl/quimica/profesor/astudillo/Capitulos/capitulo05.htm
http://es.wikipedia.org/wiki/Radical_alquilo
http://es.wikipedia.org/wiki/Alquino
http://es.wikipedia.org/wiki/Hidrocarburo_arom%C3%A1tico
http://es.wikipedia.org/wiki/Benceno
http://www.cespro.com/Materias/MatContenidos/Contquimica/Quimica_organica/quimicaorganica3.htm
Ligandos de afinidad
Son las moléculas bioquímicas que se encuentran ancladas químicamente sobre el soporte sólido inerte, y son las responsables de la adsorción específica de los solutos-analitos. Pueden considerarse dos clasificaciones de los mismos: Según su naturaleza, pueden ser macromoléculas biológicas o bien moleculas de bajo peso molecular de biomoléculas pequeñas o macromoléculas bioquímicas, respectivamente. Y según su actuación. Que se fundamenta en la selectividad en la retención que condiciona las características de la cromatografía de afinidad; se distinguen dos grandes grupos: Ligandos específicos , como los anticuerpos , que se enlazan reversiblemente a un solo soluto, y los ligandos generales enlazados con un determinado grupo de compuestos bioquímicos, como las lectinas y nucleótidos.

Esquema de un cromatograma de afinidad.
Soportes
El material sobre cuya superficie activada se establece el enlace covalente con el ligando de afinidad. Debe poseer propiedades como tener una gran superficie, tamaño del grano controlable, porosidad controlable, carácter suficientemente hidrofílico para evitar adsorciones no específicas de proteínas u otras moléculas, estabilidad mecánica, en especial para trabajar a alta presión.
El material utilizado generalmente para el soporte son geles orgánicos derivados de los polisacáridos como la agarosa (sepharosa), polímeros de acrilamida, fractogel TSK y sílices CPG.
Inmovilización de ligandos
La inmovilización de los ligandos de afinidad es un proceso complejo que en cada caso tiene connotaciones específicas.
El general, los ligandos de afinidad se inmovilizan mediante el establecimiento de enlaces químicos covalente con el soporte sólido activado y un grupo reactivo del ligando que esté lo más lejos posible de la zona activa de bioadsorción.
El objetivo de la inmovilización consiste en obtener una capa estable y densa del ligando bioquímico que conserve su actividad específica con plenitud.
La inmovización del ligando de afinidad se realiza en general mediante dos etapas secuenciales:
- Activación del soporte, que consiste en el ataque químico con diferentes reactivos de la superficie de los soportes antes mencionados, que se caracterizan por poseer grupos hidroxilos superficiales. De la gran variedad de procedimientos el más común es el ataque con bromuro de cianógeno sobre la matriz de polisacárido. Según el pito de matriz se originan grupos diferentes: ésteres cianato en agarosa e imidocarbonatos en dextranos, según reacciones uno o dos grupos hidroxilos de la matriz. Esta etapa produce en un disolvente orgánico o en mezclas con agua. Luego sigue el anclaje químico del ligando que se da mediante la reacción de grupos amino del mismo, fundamentalmente con el soporte activado.
Metodos de elución
Según la naturaleza de los ligandos de afinidad y la de los solutos-analitos, y teniendo en cuanta la forma de eliminar los solutos de la columna, cave distinguir los procedimientos generales de elución como:
Elución bioespecífica: La fase móvil desplazante contiene a un modificador (generalmente llamado inhibidor) que en realidad se trata de un ligando de afinidad no ligado de bajo peso molecular que interacciona con el sitio activo de la macromolécula biológica que puede ser soluto-analito o bien el ligando de afinidad para solutos de bajo peso molecular, produciéndose en todos los casos una elución por desplazamiento o competencia entre los componentes de bajo peso molecular ligados o no, con el sitio activo de la macromolécula biológica ligada o libre. Se distinguen 2 tipos de elución bioespecífica la normal y la invertida.
La elución normal se basa en la interacción inhibidor-analito, que es la situación más frecuente. El analito es una biosustancia macromolecular que es retenida por un ligando de afinidad de bajo peso molecular, y eluida con un inhibidor que es también de bajo peso molecular y que tiene preferencia por el sitio activo del analito, por lo que es retirada del sólido y eluida. Ejemplo, la purificación de la lectina.
La elución invertida, se basa en la interacción inhibidor-ligando de afinidad. El cual es una biomacromolécula que retienen específicamente el analito. La presencia del inhibidor en la fase móvil provoca un desplazamiento análogo al anterior y se eluye el analito. Se usa lectina para purificar glucoproteína.
En la elución no bioespecífica, la fase móvil provoca la denaturación del ligando inmovilizado, del soluto-analito o de ambos mediante el cambio suave y reversible de los correspondientes sitios activo, de tal manera que se interrumpe la adsorción bioespecífica mediante eliminación de una o varias de las causas que la provocan.
NOMENCLATURA IUPAC PARA CROMATOGRAFIA
TERMINO
Cromatografía. La cromatografía es un método físico de separación en el que los componentes a separar se distribuyen entre dos fases, una de las cuales está en reposo (fase estacionaria) mientras que la otra (fase móvil) se mueve en una dirección definida.
Cromatógrafo. El instrumento empleado para realizar una separación cromatográfica.
Cromatógrama. Una gráfica u otro tipo de presentación de la respuesta de un detector, la concentración de un analito en el efluente u otra magnitud usada como medida de la concentración en el efluente, frente al volumen de efluente o al tiempo. En la cromatografía plana, "cromatógrama" puede referirse al papel o capa con las zonas separadas.
Fase Ligada. Una fase estacionaria que está unida de forma covalente a las partículas de soporte o a la pared interior de la columna.
Fase Inmovilizada. Una fase estacionaria que está inmovilizada sobre las partículas del soporte o sobre la pared interior de la columna, por ejemplo por polimerización in situ (entrecruzamiento químico) tras un recubrimiento.
Fase Móvil. Fluido que se filtra a través o a lo largo del lecho estacionario, en una dirección definida. Puede ser un líquido (Cromatografía Líquida), un gas (Cromatografía de Gases) o un fluido supercrítico (Cromatografía con Fluido Supercrítico). En la cromatografía de gases se uede usar la expresión Gas Portador para la fase móvil. En la cromatografía de elución se usa también para la fase móvil la expresión Eluyente.
Eluir. Aplicar la cromatografía de elución. El proceso de elución se puede detener mientras todos los componentes de la muestra están aún en el lecho cromatográfico, o continuarse hasta que lo hayan abandonado. Nota: Se prefiere el término "Eluir" a "Desarrollar", término usado en nomenclaturas anteriores de cromatografía plana.
Efluente. La fase móvil que abandona la columna.
Muestra. Mezcla consistente en cierto número de componentes, cuya separación se pretende en el lecho cromatográfico al ser arrastrados o eluidos por la fase móvil.
Componentes de la Muestra. Los constituyentes químicamente puros de la muestra. Pueden no ser retenidos por la fase estacionaria (es decir, no retardados), retenidos parcialmente (es decir, eluidos a tiempos diferentes) o retenidos permanentemente. Se aceptan también los términos Eluito y Analito para un componente de la muestra
3.1 Cromatografía en capa fina.
Por este método se pueden analizar mezclas de aminoácidos. La muestra para análisis se aplica por medio de un tubo capilar en la superficie de una capa fina adsorbente en forma de banda, punto o mancha y es adsorbida en la superficie por la acción de fuerzas electrostáticas (Fuerzas de Van der. Waals, puentes de hidrogeno, efectos inductivos, etc). Los adsorbentes más utilizados son gel de silica, alumina, tierra silícea, celulosa y poliamidas. Como soportes del adsorbente se utilizan laminas o placas de vidrio, plásticas o metálicas, algunas placas tienen indicador de fluorescencia : f254 ó f366.
La placa seca se coloca en el tanque cromatográfico o cámara, en el cual debe encontrarse saturado el eluente (Fase Móvil líquida).El eluente ascenderá o desplazara por capilaridad en la placa y arrastrará los componentes a lo largo de ésta produciendo “manchas” que representan a los componentes, la separación se da por migración diferencial, es decir que la fase móvil arrastra a las substancias apolares y aquellas más polares son retenidas por la fase estacionaria dando lugar a la separación. Posteriormente se evapora el eluente y la placa se analiza por medio de métodos químicos en el que por inmersión o rociado se obtienen derivados coloreados o fluorescentes (Adición de Ninhidrina a aminas, Ácido sulfúrico para carbonizar compuestos orgánicos, etc), o por medio de métodos físicos ópticos utilizando radiación UV o luz visible.
El análisis es de tipo cualitativo, semicuantitativo o cuantitativo. En el primero se hacen comparaciones visuales de color e intensidad y propiedades UV entre otras. En el semicuantitativo se observa diámetro y comparación visual e intensidad del color de la mancha contra manchas patrones de concentración conocida. Y en la forma cuantitativa se pueden realizar medidas de transmisión a través de la sustancia y medidas de emisión o medida de luz reflejada desde la sustancia, y espectrofotometría por fluorescencia.
1.1.3.5.3.2 Cromatografía en papel.
El proceso es básicamente el mismo, solo que se usan tiras de papel cromatográfico en el tanque cromatográfico.
1.1.3.5.3.3. Cromatografía en Columna.
Se utilizan columnas de vidrio rellenas de Alúmina (Al2O3), Sílica u Oxido de Magnesio. La fase estacionaria esta constituida por un sólido poroso, el cual queda soportado en el interior de una columna generalmente fabricada en plástico o vidrio. La fase móvil se encuentra formada por la solución que lentamente va atravesando la fase estacionaria. La solución que sale al final de la columna se reemplaza constantemente por nueva solución que se suministra desde un contenedor por la parte superior de la columna.
La migración de las sustancias de la mezcla a través de la columna se encuentra retardada en diferente grado por las interacciones diferenciales que cada una de ellas pueda ejercer con la fase estacionaria. Las sustancias se separan gradualmente formando bandas dentro de la banda total, la separación, y por tanto la resolución, aumenta con la longitud de la columna. La banda individual de cada sustancia puede ensancharse con el tiempo debido a procesos difusiónales, disminuyendo por tanto la resolución.

1.1.3.5.3.4. Cromatografía de gases.
Se utiliza para la separación de sustancias gaseosas. La Fase Móvil es un Gas (llamado Gas Portador) y la Fase Estacionaria puede ser un sólido (Cromatografía Gas-Sólido) o una Película de líquido de alto punto de ebullición (Generalmente Polietilén-Glicol o Silicón) recubriendo un sólido inerte (Cromatografía Gas-Líquido). El cromatógrafo de gases esta constituido normalmente por un suministro y una entrada del gas portador, un puerto de inyección, una columna normalmente localizada en el interior de una cámara termostatizada (horno), un detector y un sistema computarizado para analizar, registrar e imprimir el cromatógrama.
La muestra se introduce a través del sistema de inyección dentro de la columna que es el sitio donde ocurre la separación. La columna de aluminio, acero inoxidable, vidrio o teflón contiene la fase estacionaria sólida o líquida y esta sujeta a la superficie por un soporte que es generalmente de sílice. La fase móvil o gas portador transporta los componentes de la muestra a través de la columna, por esta razón debe ser inerte para evitar interacciones con la muestra o la fase estacionaria, y ser capaz de minimizar la difusión gaseosa. Al final de la columna existe el detector que permite la detección y cuantificación de las sustancias, midiendo conductividad térmica y electronegatividad de las sustancias eluídas. Se produce una señal tipo eléctrico, que posteriormente se amplifica por un registrador grafico o un integrador permitiendo indicar el momento en que salen de la columna los componentes. La salida de la sustancia se registra en un cromatógrama en forma de picos y se determinan medidas como la altura y el área del pico.
1.1.3.5.3.5.Cromatografía Liquida de alta eficiencia o rendimiento (HPLC).
Es una Cromatografía de alta presión es decir se aplica el flujo a presión (entre 1500 a 2200 psi). El tamaño de partícula es entre 3 y 10 micras, la longitud de la columna es entre 5 y 25 cm. y requiere de equipo sofisticado. Se pueden analizar muestras proteicas. La reducción del tiempo en que la sustancia se encuentra en el interior de la columna, limita el ensanchamiento por difusión de las bandas, aumentando por tanto la resolución.
El sistema HPLC requiere una mezcladora de solventes, un inyector, y una bomba que inyecte el líquido a la columna. Generalmente las columnas de sílica requieren alta presión para que el flujo de líquido sea adecuado, la mezcladora se requiere para variar la proporción de solvente en la fase móvil y el inyector permite la aplicación de la muestra. A la salida de la columna se coloca un detector generalmente de absorción ultravioleta o de fluorescencia y si se desea recuperar las moléculas que eluyen de la columna, se requiere un colector.
En los sistemas modernos el análisis de la información obtenida se realizan mediante una computadora acoplada al equipo; lo que permite estandarizar la cromatografía, identificar la naturaleza los picos eluídos y cuantificar su contenido. Los picos se relacionan según su "tiempo de retención" con estándares, que permiten identificar los aminoácidos presentes en la mezcla. La cantidad relativa de cada uno de ellos se determina calculando el área la curva del pico correspondiente.

1.1.3.5.3.6. Cromatografía de intercambio iónico.
La Fase Estacionaria es una resina de intercambio iónico que contiene grupos cargados, teniendo la propiedad de separar especies ionizadas (Cationes o Aniones); la Fase Móvil es generalmente una solución amortiguadora de pH. En proteínas la cromatografía de intercambio iónico se basa en las diferencias en signo y magnitud de la carga eléctrica neta de las proteínas a un valor de pH determinado. La afinidad de cada proteína a los grupos cargados de la columna esta influenciada por el pH y por la concentración de iones en solución (concentración salina) que compiten con la proteína en la interacción con la matriz. La separación de la proteína de la matriz cargada puede obtenerse gradualmente cambiando el pH y/o la concentración salina de la fase móvil, de tal forma que se genere un gradiente de concentración.
1.1.3.5.3.7. Cromatografía por Permeabilidad en Gel.
Es útil para la separación de proteínas. La Cromatografía de exclusión molecular, también llamada de filtración en gel, separa en función de su tamaño. La matriz de la columna esta formada por un polímero entrecruzado con poros de tamaños determinados. Las proteínas de mayor tamaño migran más deprisa a lo largo de la columna que las de pequeño tamaño, debido a que son demasiado grandes para introducirse en los poros de las bolas de polímero y por tanto siguen una ruta más corta y directa a lo largo de la longitud de la columna. Las proteínas de menor tamaño, entran en los poros y su marcha a lo largo de la columna es más lenta.
1.1.3.5.3.8. Cromatografía de Afinidad.
La Cromatografía de Afinidad permite la separación de mezclas proteicas por su afinidad o capacidad de unión a un determinado ligando. En este caso, las proteínas que se retienen en la columna son aquellas que se unen específicamente a un ligando que previamente se ha unido covalentemente a la matriz de la columna. Después de que las proteínas que no se unen al ligando son lavadas o eluidas a través de la columna, la proteína de interés que ha quedado retenida en la columna se eluye o libera mediante el empleo de una solución que contiene bien ligando libre u otro compuesto que rompa la interacción entre el ligando y la proteína.

Tipos de cromatografía
Naturaleza de fase estacionaria
Naturaleza de fase estacionaria Sólido Adsorción
Exclusión
Cambio iónico
Afinidad
Líquido Partición
Naturaleza de fase móvil Liquido Líquido-líquido ((partición)
Líquido-sólido)adsorción, cambio iónico, exclusión, Afinidad.
Gas Gas-líquido (CGL)
Gas-sólido (CGS)

Cromatografía de afinidad
Se trata de un tipo especial de cromatografía de adsorción sólido-líquido en la que la sustancia de naturaleza bioquímica (anticuerpos, cofactores, inhibidores enzimáticos, lectinas y otras moléculas) denominadas ligandos de afinidad y enlazados químicamente en soportes sólidos adecuados, retienen a los solutos (analitos), también de naturaleza bioquímica, de manera reversible y selectiva. Las separaciones se basan en el acoplamiento ¨llave-cerradura¨ típico de la biología molecular.
Fundamento de la cromatografía de afinidad
En la figura se muestra de forma esquemática el fundamento de las separaciones mediante cromatografía de afinidad. Un volumen no excesivamente grande de muestra de naturaleza biológica se introduce en la columna que contienen un soporte polimérico inerte que retienen a la sustancia activa enlazado covalentemente y que se denomina ligando de afinidad. Sólo existe interacción específica entre este ligando y un soluto-analito (proteína) de la muestra insertada que queda retenido (adsorbido). Se procede a la elución de los demás componentes de la muestra mediante una primera fase móvil que no influye en el acoplamiento. A continuación se introduce una nueva fase movil que desactiva el acoplamiento por alteración reversible de los sitios activos del inhibidor-ligando, del soluto (proteína) o de ambos; generalmente se utiliza un cambio de pH que modifica las características de los sitios activos; se eluye así el soluto de interés. Una vez finalizada la separación, se procede a la regeneración de la columna, lo que generalmente se hace mediante el empleo de la primera fase móvil y constituye una etapa rápida.
La cromatografía de afinidad tiene una serie de características generales que la distinguen de otros tipos de cromatografía líquidas
• Alta selectividad en el mecanismo de retención
• Campo de aplicación restringido
• Separación de un solo soluto analito
• Empleo de sistema de baja presión
• Columnas cortas de escasa eficacia cromatográfica
un lecho cromatográfico que contiene la fase estacionaria, la cual puede ser líquida o sólida. Las propiedades de los componentes de una mezcla determinan su movilidad entre sí y con respecto a la fase móvil. La base de la separación cromatográfica será, por tanto, la diferencia en la migración de los mismos.
1.1.3.5.1. Notas Históricas
El botánico ruso Mijail Tswett estableció las ventajas de la técnica, adopto la terminología y definió los procedimientos experimentales básicos para esta técnica, se considera que es el Padre de la Cromatografía. En los años 30 y 40 empezó su desarrollo y aplicación en diferentes procedimientos de experimentación.
1.1.3.5.2. Principios
La palabra Cromatografía significa EscribirenColores, porque cuando fue desarrollada los componentes separados eran colorantes. Se define como una técnica o método físico de separación basado en las diferentes velocidades con que se mueven los solutos disueltos en un disolvente llamado eluente (fase móvil) a través de un medio estacionario o fijo. Los componentes a separar se distribuyen entre la fase estacionaria y la fase móvil o fluido que pasa a través o a lo largo de la fase estacionaria. Como los componentes de la mezcla presentan diferente tendencia a permanecer en cualquiera de las fases, la separación se da por el movimiento de la fase móvil en relación con la estacionaria y de la distribución de las sustancias entre las dos fases. Las moléculas que "prefieren disolverse" en la fase móvil serán eluídas más rápido que las que son preferencialmente solubles en la fase estacionaria y que tienden a quedar retenidas. En resumen se fundamenta en la separación entre la fase estacionaria sólida o liquida y la fase móvil liquida o gaseosa
Los fenómenos rectores del proceso de retención y separación son la adsorción y la absorción. El primero queda delimitado a la superficie interfacial es decir se refiere a la fijación o retención de la sustancia entre la superficie de las dos fases; se relaciona con fuerzas químicas y físicas que dependen de la naturaleza de la sustancia absorbida, temperatura, naturaleza del absorbente y concentración. El segundo fenómeno determina la retención de una especie química por parte de una masa y depende de la tendencia que tiene ésta a formar mezcla o reaccionar químicamente con la misma.
1.1.3.5.3. Clasificación de la Cromatografía
Existen muchas maneras de clasificar los métodos cromatográficos, según su fase móvil se clasifica en Cromatografía de gases que puede ser a través de dos sistemas, gas- líquido y gas-sólido y Cromatografía líquida donde el eluente es un líquido y puede ser líquido-liquido, liquido-sólido. Por el mecanismo de retención-separación, es decir el tipo de equilibrio implicado en la transferencia de los solutos entre las fases se encuentra la Cromatografía de reparto, de adsorción y de exclusión. Según la forma de contacto entre las fases se denomina de columna o superficie plana. También se puede clasificar teniendo en cuenta la fase estacionaria, la dimensionalidad, escala física y gradientes.
UNIDAD 4

cromatografia de capa fina

La cromatografía en capa fina se basa en la preparación de una capa, uniforme, de un adsorbente mantenido sobre una placa de vidrio u otro soporte. Los requisitos esenciales son, pues, un adsorbente, placas de vidrio, un dispositivo que mantenga las placas durante la extensión, otro para aplicar la capa de adsorbente, y una cámara en la que se desarrollen las placas cubiertas. Es preciso también poder guardar con facilidad las placas preparadas y una estufa para activarlas.
La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.
Polaridad de los compuestos orgánicos en orden creciente:
hidrocarburos < olefinas < fluor < cloro < nitro < aldehído
aldehído < ester < alcohol < cetonas < aminas < ácidos < amidas
Ventajas de la cromatografía en capa fina
La cromatografía en capa fina presenta una serie de ventajas frente a otros métodos cromatográficos (en columna, en papel, en fase gaseosa, ...) ya que el utillaje que precisa es más simple. El tiempo que se necesita para conseguir las separaciones es mucho menor y la separación es generalmente mejor. Pueden usarse reveladores corrosivos, que sobre papel destruirían el cromatograma. El método es simple y los resultados son fácilmente reproducibles, lo que hace que sea un método adecuado para fines analíticos.
Adsorbentes
Al realizar la elección del adsorbente se debe tener en cuenta el tamaño de las partículas del adsorbente, cuanto más finamente dividido esté mayor será su adhesión al soporte, aunque también se le puede añadir un adherente (yeso,...). Algunos de los adsorventes más utilizados son:
• Celulosa
• Almidón
• Azucares
• Gel de sílice (silicagel)
• Óxido de aluminio (alúmina)
• Carbón activo (carbón en polvo)
• Kieselguhr
Los tres primeros se utilizan para extraer componentes polifuncionales de plantas y animales.
Silicagel
El gel de sílice o ácido silícico es uno de los más utilizados, es débilmente ácido, su pH oscila entre 4-5. Con lo cual no se deberá utilizar con sustancias que se corrompan con los ácidos. Los geles de sílice normales suelen contener impurezas de hierro y/o aluminio, este factor también se debe tener en cuentas respecto al uso de componentes. El tamaño del grano suele ser de 10 a 40 micras (µ) y el tamaño de poro varía de 20 a 150Å.
Generalmente lleva incorporado un agente aglomerante, yeso (sulfato de cálcico semihidratado), para proporcionar firmeza al adsorbente. También han sido incorporados dos indicadores del ultravioleta, juntos o por separados (amarillo y/o verde), en diversos tipos de gel de sílice.
Se trata de un adsorbente polar, pero puede ser tratado con hidrocarburos para neutralizar los grupos -OH, de forma que se haga apto para separar componentes lipófilos (esteroides, ácidos grasos, ceras, vitaminas liposolubles, etc). A este proceso se le denomina cromatografía de fase reversa (silanizado).
Alúmina
La alúmina u óxido de aluminio es un adsorbente ligeramente básico debido a que en el proceso de extracción de la alúmina a partir de la bauxita quedan algunas moléculas de hidróxido de aluminio adheridas a la alúmina, dándole a ésta un carácter básico. No consigue un desarrollo tan alto de la sustancia depositada como el gel de sílice.
La alúmina puede ser tratada químicamente para conseguir alúminas ácidas, básicas y neutras. Puede contener aglomerantes y/o indicadores ultravioletas. Es un adsorbente de carácter polar, de tal forma que retendrá con mayor avidez a los componentes polares.








1.1.3.5. Cromatografia
La cromatografía puede definirse como una técnica que separa una mezcla de solutos basada en la velocidad de desplazamiento diferencial de los mismos que se establece al ser arrastrados por una fase móvil (líquida o gaseosa) a través de
Pérdida de función
La mayoría de las proteínas pierden su función biológica cuando están desnaturalizadas, por ejemplo, las enzimas pierden su actividad catalítica, porque los sustratos no pueden unirse más al centro activo, y porque los residuos del aminoácido implicados en la estabilización de los sustratos no están posicionados para hacerlo.
Reversibilidad e irreversibilidad
En muchas proteínas la desnaturalizacion no es reversible; esto depende del grado de modificación de las estructuras de la proteína.Aunque se ha podido revertir procesos de desnaturalización quitando el agente desnaturalizante, en un proceso que puede tardar varias horas incluso días; esto se debe a que el proceso de reestructuración de la proteína es tentativo, es decir, no asume su forma original inmediatamente, así muchas veces se obtienen proteínas distintas a la inicial, además con otras características como insolubilidad (debido a los agregados polares que puedan unírsele). Recientemente se ha descubierto que, para una correcta renaturalización, es necesario agregar trazas del agente desnaturalizante. Esto fue importante históricamente, porque condujo a la noción de que toda la información necesaria para que la proteína adopte su forma nativa se encuentra en la estructura primaria de la proteína, y por lo tanto en el ADN que la codifica.
Algunos ejemplos comunes
Cuando se cocina el alimento, algunas de sus proteínas se desnaturalizan. Esta es la razón por la cual los huevos hervidos llegan a ser duros y la carne cocinada llega a ser firme.
Un ejemplo clásico de desnaturalización de proteínas se da en la clara de los huevos, que son en gran parte albúminas en agua. En los huevos frescos, la clara es transparente y líquida; pero al cocinarse se torna opaca y blanca, formando una masa sólida intercomunicada. Esa misma desnaturalización puede producirse a través de una desnaturalización química, por ejemplo volcándola en un recipiente con acetona. Otro ejemplo es la nata (nombre que proviene de la desnaturalización), que se produce por calentamiento de la lactoalbúmina de la leche (y que no tiene nada que ver con la crema) La proteína de la leche se llama caseína y se desnaturaliza cuando el pH de la leche se modifica. Esto se le conoce en lo cotidiano “Se cortó la leche”. La caseína se desnaturaliza cuando le agregas a un vaso de leche suficiente jugo de limón para modificar el pH de la leche.
Desnaturalización de ácidos nucleicos
La desnaturalización de ácidos nucleicos como el ADN por altas temperaturas produce una separación de la doble hélice, que ocurre porque los enlaces o puentes de hidrógeno se rompen. Esto puede ocurrir durante la reacción en cadena de la polimerasa; las cadenas del ácido nucleico vuelven a unirse (renaturalizarse) una vez que las condiciones "normales" se restauran. Si las condiciones son restauradas rápidamente, las cadenas pueden no alinearse correctamente.


Electroforesis
La electroforesis es una técnica para la separación de moléculas según la movilidad de estas en un campo eléctrico. La separación puede realizarse sobre la superficie hidratada de un soporte sólido (p. ej., electroforesis en papel o en acetato de celulosa), o bien a través de una matriz porosa (electroforesis en gel), o bien en disolución (electroforesis libre). Dependiendo de la técnica que se use, la separación obedece en distinta medida a la carga eléctrica de las moléculas y a su masa.
La variante de uso más común para el análisis de mezclas de proteínas o de ácidos nucleicos utiliza como soporte un gel, habitualmente de agarosa o de poliacrilamida. Los ácidos nucleicos ya disponen de una carga eléctrica negativa, que los dirigirá al polo positivo, mientras que las proteínas se cargan al unirse con sustancias como el SDS (detergente) que incorpora cargas negativas de una manera dependiente de la masa molecular de la proteína. Al poner la mezcla de moléculas y aplicar un campo eléctrico, éstas se moverán y deberán ir pasando por la malla del gel (una red tridimensional de fibras cruzadas), por lo que las pequeñas se moverán mejor, más rápidamente. Así, las más pequeñas avanzarán más y las más grandes quedarán cerca del lugar de partida.
La gran mayoría de macromoléculas están cargadas eléctricamente y, al igual que los electrolitos, se pueden clasificar en fuertes y débiles dependiendo de la constante de ionización de grupos ácidos y básicos. Por ejemplo los ácidos nucleicos son poliácidos fuertes.
Por lo general, para caracterizar la molécula se determina la velocidad a la que esta se mueve en un campo eléctrico y se utiliza para determinar, en el caso de proteínas, la masa molecular o para detectar cambios de aminoácidos y separar cuantitativamente distintas especies moleculares; en el caso de ácidos nucleicos se determina su tamaño, medido en pares de bases...
Velocidad de una molécula
Para separar distintas especies moleculares, se crea un campo eléctrico para la molécula colocada en un líquido portador. Al generar este campo existirá una intensidad pasando constantemente del polo positivo al polo negativo, por lo tanto, actuará una fuerza sobre la molécula y esta experimentará una aceleración hasta obtener una velocidad en la que la resistencia, por viscosidad del medio, neutraliza la fuerza impulsora, es decir, la molécula se desplaza con una velocidad constante.

Donde q es carga y E es la intensidad del campo eléctrico.
Se asume que la partícula es esférica y a partir de la Ley de Stokes se obtiene que

donde R es el radio de la esfera, ν su velocidad y η la viscosidad del fluido.
Por lo tanto la velocidad será:

Esta velocidad se alcanza a los pocos segundos, por consiguiente se puede concluir que es constante durante todo el experimento.
Movilidad molecular
La movilidad molecular (μ) es una magnitud característica de la partícula o molécula que refleja la velocidad relativa a la fuerza del campo.

A partir de la ecuación de velocidad se obtiene que:

Que también puede ser expresada por:

Donde Z el número de electrones y es la carga del electrón.
La movilidad depende de la carga de la partícula que, a su vez, depende del pH del medio en el que se encuentre. Por esta razón es necesario indicar el electrolito o el pH utilizado para determinar la movilidad.
Factores que afectan a la electroforesis
En general la electroforesis depende directamente del campo eléctrico y este depende de distintos parámetros. Basándose en la ley de Ohm se tiene que

Diferencia de potencial (V): define el campo eléctrico; la velocidad de avance es directamente proporcional a ella.
Resistencia (R): la movilidad de las moléculas es inversamente proporcional a ella.
Intensidad (I) : cuantifica el flujo de carga eléctrica, se relaciona directamente con la distancia recorrida por las moléculas.
Por último, otro factor que afecta significativamente a la electroforesis es la temperatura, esta es importante puesto que por el efecto Joule el paso de una corriente eléctrica va a producir calor y este es directamente proporcional a la diferencia de potencial y a la resistencia. Por lo tanto, es necesario controlar de manera estricta la temperatura para que esta no afecte a la muestra desnaturalizándola.
La complejidad estructural de las proteínas se manifiesta desde el punto de vista funcional en una gran diversidad de funciones biológicas.

Funciones de las proteínas en nuestro organismo
Son el componente nitrogenado mayoritario de la dieta y el organismo, tienen una función meramente estructural o plástica, esto quiere decir que nos ayudan a construir y regenerar nuestros tejidos, no pudiendo ser reemplazadas por los carbohidratos o las grasas por no contener nitrógeno.
No obstante, además de esta función, también se caracterizan por:
• Funciones reguladoras, Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas que llevan a cabo las reacciones químicas que se realizan en el organismo.
• Las proteínas son defensivas, en la formación de anticuerpos y factores de regulación que actúan contra infecciones o agentes extraños.
• De transporte, proteínas transportadoras de oxígeno en sangre como la hemoglobina.
• En caso de necesidad también cumplen una función energética aportando 4 kcal. por gramo de energía al organismo.
• Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
• Las proteínas actúan como catalizadores biológicos: son enzimas que aceleran la velocidad de las reacciones químicas del metabolismo.
• La contracción muscular se realiza a través de la miosina y actina, proteínas contráctiles que permiten el movimiento celular.
• Función de resistencia. Formación de la estructura del organismo y de tejidos de sostén y relleno como el conjuntivo, colágeno, elastina y reticulina.

AGENTES DESNATURALIZANTES

En desnaturalizacion, la desnaturalización es un cambio estructural de las proteínas o ácidos nucleicos, donde pierden su estructura nativa, y de esta forma su óptimo funcionamiento y a veces también cambian sus propiedades físico-químicas.
Las proteínas se desnaturalizan cuando pierden su estructura tridimensional (conformación química) y así el característico plegamiento de su estructura.
Las proteínas son filamentos largos de aminoácidos unidos en una secuencia específica. Son creadas por los ribosomas que "leen" codones de los genes y ensamblan la combinación requerida de aminoácidos por la instrucción genética. Las proteínas recién creadas experimentan una modificación en la que se agregan átomos o moléculas adicionales, como el cobre, zinc y hierro. Una vez que finaliza este proceso, la proteína comienza a plegarse sin alterar su secuencia (espontáneamente, y a veces con asistencia de enzimas) de forma tal que los residuos hidrófobos de la proteína quedan encerrados dentro de su estructura y los elementos hidrófilos quedan expuestos al exterior. La forma final de la proteína determina cómo interaccionará con el entorno.
Si la forma de la proteína es alterada por algún factor externo (por ejemplo, aplicándole calor, ácidos o álcalis), no es capaz de cumplir su función celular. Éste es el proceso llamado desnaturalización.
Cómo la desnaturalización afecta a los distintos niveles
• En la desnaturalización de la estructura cuaternaria, las subunidades de proteínas se separan o su posición espacial se corrompen.
• La desnaturalización de la estructura terciaria implica la interrupción de:
o Enlaces covalentes entre las cadenas laterales de los aminoácidos (como los puentes disulfuros entre las cisteínas).
o Enlaces no covalentes dipolo-dipolo entre cadenas laterales polares de aminoácidos.
o Enlaces dipolo inducidos por fuerzas de Van Der Waals entre cadenas laterales no polares de aminoácidos.
• En la desnaturalización de la estructura secundaria las proteínas pierden todos los patrones de repetición regulares como las hélices alfa y adoptan formas aleatorias.
• La estructura primaria, la secuencia de aminoácidos ligados por enlaces peptídicos, no es interrumpida por la desnaturalización